16.4 Videos Guide

16.4a

Theorem (statement and partial proof):

• Green's Theorem (essentially the Fundamental Theorem of Calculus for double integrals): For a region D in \mathbb{R}^2 bounded by a positively oriented, simple, closed curve C and a vector field $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$, if P and Q have continuous partial derivatives on an open region containing D, then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \oint_{C} P \, dx + Q \, dy = \int_{\partial D} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$$

16.4b

• Notation: $C = \partial D$ is the simple, positively oriented boundary curve of D. The symbol \oint_C is used to indicate positive orientation.

Exercises:

• Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem. $\circ \oint_C y \, dx - x \, dy$, *C* is the circle with center the origin and radius 4

16.4c

• $\oint_C x^2 y^2 dx + xy dy$, *C* consists of the arc of the parabola $y = x^2$ from (0, 0) to (1, 1) and the line segments from (1, 1) to (0, 1) and from (0, 1) to (0, 0)

16.4d

• Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$. (Check the orientation of the curve before applying the theorem.)

 $\mathbf{F}(x,y) = \langle e^{-x} + y^2, e^{-y} + x^2 \rangle$, *C* consists of the arc of the curve $y = \cos x$ from $(-\pi/2, 0)$ to $(\pi/2, 0)$ and the line segment from $(\pi/2, 0)$ to $(-\pi/2, 0)$

• Green's Theorem and regions with holes